Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.096
1.
J Drugs Dermatol ; 23(5): 376-379, 2024 05 01.
Article En | MEDLINE | ID: mdl-38709686

Merkel cell carcinoma (MCC) is a rare, highly aggressive cutaneous malignancy. Immunosuppression increases the risk of MCC and is associated with poor prognosis. Organ transplant recipients (OTR) have worse overall survival (OS) than patients with immunosuppression due to other causes. Treating MCC after organ transplantation is challenging, as checkpoint inhibitor immunotherapy, the standard of care for treating MCC, increases the risk of transplant rejection. This paper reviews the cases of two simultaneous pancreas-kidney transplant (SPKT) recipients with MCC and explores the role of immunosuppression in the development of MCC. Immunosuppression was discontinued and checkpoint inhibitor therapy was initiated in the first patient and considered by the second patient. In both cases, treatment failed, and the patients died shortly after developing metastatic MCC. These cases illustrate the need for improved multidisciplinary treatment regimens for MCC in OTRs. J Drugs Dermatol. 2024;23(5):376-377.     doi:10.36849/JDD.8234  .


Carcinoma, Merkel Cell , Kidney Transplantation , Pancreas Transplantation , Skin Neoplasms , Humans , Carcinoma, Merkel Cell/therapy , Carcinoma, Merkel Cell/surgery , Carcinoma, Merkel Cell/diagnosis , Carcinoma, Merkel Cell/pathology , Kidney Transplantation/adverse effects , Skin Neoplasms/pathology , Pancreas Transplantation/adverse effects , Male , Fatal Outcome , Middle Aged , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Female , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Immunosuppression Therapy/adverse effects
2.
Nat Commun ; 15(1): 3860, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719824

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.


Cholesterol , Proteome , Humans , Cholesterol/blood , Cholesterol/metabolism , Proteome/metabolism , Female , Male , Middle Aged , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/blood , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/blood , Biomarkers/blood , Aged , Triiodothyronine/blood , Machine Learning , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/blood , Neoplasms/metabolism , Proteomics/methods
3.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719909

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
4.
J Transl Med ; 22(1): 438, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720336

BACKGROUND: Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS: In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS: Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION: ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.


Deep Learning , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Male , Female , Treatment Outcome , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Retrospective Studies , ROC Curve , Adult
5.
Front Immunol ; 15: 1354710, 2024.
Article En | MEDLINE | ID: mdl-38726010

Cancer vaccines are gaining ground as immunotherapy options. We have previously demonstrated in cutaneous melanoma (CM) patients that adjuvant treatment with VACCIMEL, a mixture of four irradiated CM cell lines co-adjuvanted with BCG and GM-CSF, increases the cellular immune response to melanocyte differentiation antigens, cancer-testis antigens and neoantigens, with respect to basal levels. On the other hand, it is also known that treatment with anti-PD-1 monoclonal antibodies (MAbs), acting on pre-existing tumor-reactive lymphocytes, induces clinical responses in CM patients, albeit in a fraction of treated patients. A combination of both treatments would appear therefore desirable. In this paper, we describe CM patients who, having progressed even years after vaccination, were treated with anti-PD-1 MAbs. In 5/5 of such progressor patients, complete responses were obtained which lasted between 3 and 65+ months. Three of the patients remain disease-free and two recurred. One of the patients passed away after a recurrence of brain metastases. We suggest that clonally expanded reactive lymphocytes induced by VACCIMEL partially remain as memory cells, which may be recalled after tumor recurrence and may foster ulterior activity of anti-PD-1 MAbs.


Cancer Vaccines , Melanoma , Programmed Cell Death 1 Receptor , Skin Neoplasms , Humans , Melanoma/immunology , Melanoma/therapy , Melanoma/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cancer Vaccines/administration & dosage , Male , Female , Middle Aged , Aged , Immune Checkpoint Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Melanoma, Cutaneous Malignant , Treatment Outcome , Adjuvants, Immunologic/therapeutic use , Adjuvants, Immunologic/administration & dosage
6.
Front Immunol ; 15: 1395332, 2024.
Article En | MEDLINE | ID: mdl-38726017

PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.


B7-H1 Antigen , Exosomes , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/immunology , Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Exosomes/metabolism , Exosomes/immunology , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods , Signal Transduction , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Biomarkers, Tumor
7.
World J Surg Oncol ; 22(1): 128, 2024 May 10.
Article En | MEDLINE | ID: mdl-38725005

BACKGROUND: N6-methyladenosine (m6A) modification plays an important role in lung cancer. However, methyltransferase-like 14 (METTL14), which serves as the main component of the m6A complex, has been less reported to be involved in the immune microenvironment of lung cancer. This study aimed to analyze the relationship between METTL14 and the immune checkpoint inhibitor programmed death receptor 1 (PD-1) in lung cancer. METHODS: CCK-8, colony formation, transwell, wound healing, and flow cytometry assays were performed to explore the role of METTL14 in lung cancer progression in vitro. Furthermore, syngeneic model mice were treated with sh-METTL14 andan anti-PD-1 antibody to observe the effect of METTL14 on immunotherapy. Flow cytometry and immunohistochemical (IHC) staining were used to detect CD8 expression. RIP and MeRIP were performed to assess the relationship between METTL14 and HSD17B6. LLC cells and activated mouse PBMCs were cocultured in vitro to mimic immune cell infiltration in the tumor microenvironment. ELISA was used to detect IFN-γ and TNF-α levels. RESULTS: The online database GEPIA showed that high METTL14 expression indicated a poor prognosis in patients with lung cancer. In vitro assays suggested that METTL14 knockdown suppressed lung cancer progression. In vivo assays revealed that METTL14 knockdown inhibited tumor growth and enhanced the response to PD-1 immunotherapy. Furthermore, METTL14 knockdown enhanced CD8+T-cell activation and infiltration. More importantly, METTL14 knockdown increased the stability of HSD17B6 mRNA by reducing its m6A methylation. In addition, HSD17B6 overexpression promoted the activation of CD8+ T cells. CONCLUSION: The disruption of METTL14 contributed to CD8+T-cell activation and the immunotherapy response to PD-1 via m6A modification of HSD17B6, thereby suppressing lung cancer progression.


CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Lung Neoplasms , Methyltransferases , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Mice , Methyltransferases/metabolism , Methyltransferases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Humans , Lymphocyte Activation , Mice, Inbred C57BL , Cell Proliferation , Tumor Cells, Cultured , Prognosis , Immunotherapy/methods , Female
8.
Medicine (Baltimore) ; 103(19): e38017, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728499

Numerous inflammatory indicators have been demonstrated to be strongly correlated with tumor prognosis. However, the association between inflammatory indicators and the prognosis of patients with nasopharyngeal carcinoma (NPC) receiving treatment with programmed death receptor-1 (PD-1) immunosuppressant monoclonal antibodies remains uncertain. Inflammatory indicators in peripheral blood were collected from 161 NPC patients at 3 weeks after initial PD-1 treatment. Through univariate and multivariate analyses, as well as nomogram and survival analyses, we aimed to identify independent prognostic factors related to 1-year progression-free survival (PFS). Subsequently, a prognostic nomogram was devised, and its predictive and discriminating abilities were assessed utilizing calibration curves and the concordance index. Our univariate and multivariate analyses indicated that age (P = .012), M stage (P < .001), and systemic immune-inflammation index (SII) during the third week following initial PD-1 treatment (SII3, P = .005) were independently correlated with the 1-year PFS of NPC patients after PD-1 treatment. Notably, we constructed a novel nomogram based on the SII3, age, and M stage. Importantly, utilizing the derived cutoff point from the nomogram, the high-risk group exhibited significantly shorter PFS than did the low-risk group (P < .001). Furthermore, the nomogram demonstrated a greater concordance index for PFS than did the tumor node metastasis stage within the entire cohort. We successfully developed a nomogram that integrates the SII3 and clinical markers to accurately predict the 1-year PFS of NPC patients receiving PD-1 inhibitor treatment.


Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Nomograms , Humans , Male , Female , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/blood , Middle Aged , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/blood , Adult , Aged , Immune Checkpoint Inhibitors/therapeutic use , Prognosis , Neoplasm Staging , Progression-Free Survival , Young Adult
9.
Front Immunol ; 15: 1351656, 2024.
Article En | MEDLINE | ID: mdl-38711524

Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction.


Carrier Proteins , Complement C1q , Immune Checkpoint Inhibitors , Membrane Glycoproteins , Mitochondrial Proteins , Neoplasms , Receptors, Complement , Humans , Complement C1q/metabolism , Complement C1q/immunology , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Complement/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Tumor Microenvironment/immunology
10.
Sci Rep ; 14(1): 10661, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724599

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Antibodies, Bispecific , Cricetulus , Lymphocyte Activation Gene 3 Protein , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , CHO Cells , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
11.
BMJ Case Rep ; 17(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38697678

A woman in her 60s was diagnosed with a metastatic, unresectable rare histological type of liver cancer; combined hepatocellular cholangiocarcinoma. She had palliative chemotherapy, initially with gemcitabine and cisplatin, and then with oxaliplatin, L-folinic acid and fluorouracil. Both treatment strategies demonstrated disease progression, and somatic mutation profiling revealed no actionable mutations. The patient was started on immuno-oncology (IO) with nivolumab and ipilimumab, followed by maintenance nivolumab. She has achieved a sustained ongoing partial response since the start of this therapy for at least 12 months. The outcome in this patient is in keeping with the growing evidence of the role that IO agents have in metastatic biliary tract cancer and also serves to highlight their importance in mixed histology liver tumours.


Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Immune Checkpoint Inhibitors , Liver Neoplasms , Nivolumab , Humans , Female , Cholangiocarcinoma/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Nivolumab/therapeutic use , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ipilimumab/therapeutic use , Treatment Outcome
12.
J Immunother Cancer ; 12(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38702145

BACKGROUND: Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS: An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS: During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION: Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.


Bone Remodeling , Immune Checkpoint Inhibitors , Humans , Bone Remodeling/drug effects , Male , Female , Prospective Studies , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Aged , Longitudinal Studies , Neoplasms/drug therapy , Adult
13.
J Immunother Cancer ; 12(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38702146

BACKGROUND: T cell checkpoint receptors are expressed when T cells are activated, and modulation of the expression or signaling of these receptors can alter the function of T cells and their antitumor efficacy. We previously found that T cells activated with cognate antigen had increases in the expression of PD-1, and this was attenuated in the presence of multiple toll-like receptor (TLR) agonists, notably TLR3 plus TLR9. In the current report, we sought to investigate whether combining TLR agonists with immune checkpoint blockade can further augment vaccine-mediated T cell antitumor immunity in murine tumor models. METHODS: TLR agonists (TLR3 plus TLR9) and immune checkpoint inhibitors (antibodies targeting PD-1, CTLA-4, LAG-3, TIM-3 or VISTA) were combined and delivered with vaccines or vaccine-activated CD8+T cells to E.G7-OVA or MyC-CaP tumor-bearing mice. Tumors were assessed for growth and then collected and analyzed by flow cytometry. RESULTS: Immunization of E.G7-OVA tumor-bearing mice with SIINFEKL peptide vaccine, coadministered with TLR agonists and αCTLA-4, demonstrated greater antitumor efficacy than immunization with TLR agonists or αCTLA-4 alone. Conversely, the antitumor efficacy was abrogated when vaccine and TLR agonists were combined with αPD-1. TLR agonists suppressed PD-1 expression on regulatory T cells (Tregs) and activated this population. Depletion of Tregs in tumor-bearing mice led to greater antitumor efficacy of this combination therapy, even in the presence of αPD-1. Combining vaccination with TLR agonists and αCTLA-4 or αLAG-3 showed greater antitumor than with combinations with αTIM-3 or αVISTA. CONCLUSION: The combination of TLR agonists and αCTLA-4 or αLAG-3 can further improve the efficacy of a cancer vaccine, an effect not observed using αPD-1 due to activation of Tregs when αPD-1 was combined with TLR3 and TLR9 agonists. These data suggest that optimal combinations of TLR agonists and immune checkpoint blockade may improve the efficacy of human anticancer vaccines.


Cancer Vaccines , Immune Checkpoint Inhibitors , Toll-Like Receptors , Animals , Mice , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism , Female , Humans , Cell Line, Tumor , Toll-Like Receptor Agonists
14.
J Immunother Cancer ; 12(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38702147

Patients with advanced cancer, previously treated with immune checkpoint blockade therapy, may retain residual treatment when undergoing the initial infusion of experimental monotherapy in phase 1 clinical trials. ANV419, an antibody-cytokine fusion protein, combines interleukin-2 (IL-2) with an anti-IL-2 monoclonal antibody, aiming to stimulate the expansion of CD8 T and natural killer lymphocytes while restricting regulatory T lymphocytes. In the recent publication of the phase 1 dose escalation study of ANV419, a notable gap exists in detailed information regarding patients' prior antitumoral treatments, specifically programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) targeted monoclonal antibodies. Some patients likely retained residual anti-PD-1/PD-L1 monoclonal antibodies, potentially influencing the outcomes of ANV419. In a separate clinical cohort, we retrospectively measured the residual concentration of nivolumab and pembrolizumab, revealing persistent serum concentrations of anti-PD-1/PD-L1 antibodies even months after treatment cessation. This underscores the importance of comprehensively documenting prior immunotherapy details in clinical trials. Such information is crucial for understanding potential interactions that may impact both immunological and clinical effects.


Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Male , Female , Middle Aged , Aged , Interleukin-2/therapeutic use , Interleukin-2/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage , Adult , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/administration & dosage
15.
Front Immunol ; 15: 1355130, 2024.
Article En | MEDLINE | ID: mdl-38742103

Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.


B7-H1 Antigen , Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Receptor, ErbB-2 , Triple Negative Breast Neoplasms , Animals , Female , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/therapy , Neoadjuvant Therapy/methods , Mice , Humans , Receptor, ErbB-2/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Cell Line, Tumor , Receptors, Estrogen/metabolism , Disease Models, Animal , Xenograft Model Antitumor Assays , Breast Neoplasms/immunology , Breast Neoplasms/radiotherapy , Breast Neoplasms/therapy
16.
Proc Natl Acad Sci U S A ; 121(20): e2312855121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38713626

The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.


Disease Progression , Interleukin-8 , Neutrophils , Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/immunology , Tumor Microenvironment/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Interleukin-8/metabolism , Cell Line, Tumor , Hepatocyte Growth Factor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Male , Neutrophil Infiltration
17.
Am Soc Clin Oncol Educ Book ; 44(3): e433502, 2024 Jun.
Article En | MEDLINE | ID: mdl-38728605

Combination chemotherapy with or without radiation has served as the primary therapeutic option for classic Hodgkin lymphoma (cHL), leading to durable remission in a majority of patients with early- and advanced-stage cHL. Patients with relapsed/refractory (RR) cHL could still be cured with salvage chemotherapy and autologous stem-cell transplantation. Brentuximab vedotin (BV) and the anti-PD-1-blocking antibodies, nivolumab and pembrolizumab, are highly effective treatments for cHL and have revolutionized the management of the disease. Recent studies incorporating BV and PD-1 blockade into salvage therapy for RR cHL and into frontline treatment regimens have changed the cHL treatment paradigm. The novel agents are also useful in the treatment of older patients who have poor outcomes with traditional therapy. This manuscript will review current strategies for approaching the management of previously untreated, RR, and challenging populations with cHL, including how to incorporate the novel agents.


Hodgkin Disease , Hodgkin Disease/therapy , Hodgkin Disease/drug therapy , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local , Combined Modality Therapy , Salvage Therapy/methods , Treatment Outcome , Immune Checkpoint Inhibitors/therapeutic use , Disease Management , Recurrence
18.
J Cancer Res Clin Oncol ; 150(5): 247, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722378

BACKGROUND: The emergence of immune checkpoint inhibitors (ICIs) has enhanced survival outcomes for certain patients with advanced biliary tract carcinoma (BTC). Pinpointing those who would benefit most from immunotherapy remains elusive. We investigated the predictive value of the modified Gustave Roussy Immune Score (mGRIm-s) in BTC patients treated with ICIs. METHODS: Data from 110 patients at Chinese People's Liberation Army General Hospital, spanning September 2015 to April 2021, were analyzed. The median follow-up duration was 38.7 months as of December 2023. Risk factors included low albumin, high lactate dehydrogenase, and an elevated neutrophil-lymphocyte ratio. Patients were stratified into low (patients with no risk factors) and high (patients with at least one risk factor) mGRIm-s groups based on these factors. RESULTS: Survival outcomes post-immunotherapy favored the low mGRIm-s group, with significantly improved progression-free survival (PFS) and overall survival (OS) (8.50 months vs. 3.70 months and 21.60 months vs. 8.00 months). COX regression confirmed an elevated risk in the high mGRIm-s group. Subgroup analysis highlighted a notable survival advantage for low mGRIm-s patients receiving first-line immunotherapy. CONCLUSIONS: This study underscores mGRIm-s's potential in predicting immunotherapy response in BTC, paving the way for more targeted approaches.


Biliary Tract Neoplasms , Immune Checkpoint Inhibitors , Humans , Male , Female , Middle Aged , Prognosis , Aged , Immune Checkpoint Inhibitors/therapeutic use , Biliary Tract Neoplasms/immunology , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/pathology , Biliary Tract Neoplasms/mortality , Adult , Retrospective Studies , Immunotherapy/methods , Aged, 80 and over
19.
J Cancer Res Clin Oncol ; 150(5): 246, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722401

BACKGROUND: Recent studies have emphasized the importance of the biological processes of different forms of cell death in tumor heterogeneity and anti-tumor immunity. Nonetheless, the relationship between cuproptosis and lung adenocarcinoma (LUAD) remains largely unexplored. METHODS: Data for 793 LUAD samples and 59 normal lung tissues obtained from TCGA-LUAD cohort GEO datasets were used in this study. A total of 165 LUAD tissue samples and paired normal lung tissue samples obtained from our hospital were used to verify the prognostic value of dihydrolipoamide S-acetyltransferase (DLAT) and dihydrolipoamide branched chain transacylase E2 (DBT) for LUAD. The cuproptosis-related molecular patterns of LUAD were identified using consensus molecular clustering. Recursive feature elimination with random forest and a tenfold cross-validation method was applied to construct the cuproptosis score (CPS) for LUAD. RESULTS: Bioinformatic and immunohistochemistry (IHC) analyses revealed that 13 core genes of cuproptosis were all significantly elevated in LUAD tissues, among which DBT and DLAT were associated with poor prognosis (DLAT, HR = 6.103; DBT, HR = 4.985). Based on the expression pattern of the 13 genes, two distinct cuproptosis-related patterns have been observed in LUAD: cluster 2 which has a relatively higher level of cuproptosis was characterized by immunological ignorance; conversely, cluster 1 which has a relatively lower level of cuproptosis is characterized by TILs infiltration and anti-tumor response. Finally, a scoring scheme termed the CPS was established to quantify the cuproptosis-related pattern and predict the prognosis and the response to immune checkpoint blockers of each individual patient with LUAD. CONCLUSION: Cuproptosis was found to influence tumor microenvironment (TME) characteristics and heterogeneity in LUAD. Patients with a lower CPS had a relatively better prognosis, more abundant immune infiltration in the TME, and an enhanced response to immune checkpoint inhibitors.


Adenocarcinoma of Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , Prognosis , Immune Checkpoint Inhibitors/therapeutic use , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Female , Biomarkers, Tumor/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Middle Aged
20.
Front Immunol ; 15: 1396927, 2024.
Article En | MEDLINE | ID: mdl-38690276

Background: Immunotherapy stands as a pivotal modality in the therapeutic landscape for the treatment of advanced hepatocellular carcinoma, yet responses vary among patients. This study delves into the potential impact of sarcopenia, myosteatosis and adiposity indicators, as well as their changes during immunotherapy, on treatment response and prognosis in patients with advanced hepatocellular carcinoma treated with immune checkpoint inhibitors. Methods: In this retrospective analysis, 116 patients with advanced hepatocellular carcinoma receiving immune checkpoint inhibitors were recruited. Skeletal muscle, intramuscular, subcutaneous, and visceral adipose tissue were assessed by computed tomography at the level of the third lumbar vertebrae before and after 3 months of treatment. Sarcopenia and myosteatosis were evaluated by skeletal muscle index and mean muscle density using predefined threshold values. Patients were stratified based on specific baseline values or median values, along with alterations observed during the treatment course. Overall survival (OS) and progression-free survival (PFS) were compared using the log-rank test and a multifactorial Cox proportional risk model. Results: A total of 116 patients were recruited and divided into two cohorts, 81 patients for the training set and 35 patients for the validating set. In the overall cohort, progressive sarcopenia (P=0.021) and progressive myosteatosis (P=0.001) were associated with objective response rates, whereas progressive myosteatosis (P<0.001) was associated with disease control rates. In the training set, baseline sarcopenia, myosteatosis, and subcutaneous and visceral adipose tissue were not significantly associated with PFS and OS. In multivariate analysis adjusting for sex, age, and other factors, progressive sarcopenia(P=0.002) and myosteatosis (P=0.018) remained independent predictors of PFS. Progressive sarcopenia (P=0.005), performance status (P=0.006) and visceral adipose tissue index (P=0.001) were all independent predictors of OS. The predictive models developed in the training set also had good feasibility in the validating set. Conclusion: Progressive sarcopenia and myosteatosis are predictors of poor clinical outcomes in patients with advanced hepatocellular carcinoma receiving immune checkpoint inhibitors, and high baseline visceral adiposity is associated with a poorer survival.


Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Sarcopenia , Humans , Sarcopenia/etiology , Sarcopenia/diagnosis , Male , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Middle Aged , Liver Neoplasms/mortality , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/drug therapy , Retrospective Studies , Aged , Prognosis , Adult , Muscle, Skeletal/pathology , Adiposity
...